
CS 275
Exam I

Fall 2019

1. Write procedure (duplicate a lat) that adds a second instance of atom a every time a is

found in the flat list lat. For example, (duplicate ‘b ‘(a b a c a b a)) returns

(a b b a c a b b a)

(define duplicate
 (lambda (a lat)
 (cond
 [(null? lat) null]
 [(eq? a (car lat)) (cons a
 (cons a

 (duplicate a (cdr lat)))))]
[else (cons (car lat) (duplicate a (cdr lat)))])))

2. Write procedure (removeDuplicates lat). As usual lat is a flat list of atoms. For each

run of identical entries in lat, such as the 3s in (1 2 3 3 3 2 1), this procedure will remove

all but one of those entries. So (removeDuplicates ‘(1 3 3 3 3 4 2 2 1)) returns

(1 3 4 2 1), and (removeDuplicates ‘(1 2 1 2 3)) returns (1 2 1 2 3)

(define removeDuplicates

 (lambda (lat)

 (cond

 [(null? lat) null]

 [(null? (cdr lat)) lat]

 [(eq? (car lat) (cadr lat))

 (removeDuplicates (cdr lat))]

 [else (cons (car lat)

 (removeDuplicates (cdr lat)))])))

3. Use foldr or foldl to write (count a lat) which returns the number of instances of atom a

in lat, a flat list of atoms. For example, (count 3 ‘(1 2 3 2 3 2 3 4 3 3)) returns 5

(define count
 (lambda (a lat)
 (foldr (lambda (x y) (if (eq? x a) (+ y 1) y))
 0
 lat)))

4. Consider the following function:

(define B

 (lambda (L)

 (cond

 [(null? L) null]

 [(atom? L) (if (eq? L 'bob) (list L) null)]

 [else (apply append (map B L))])))

a) What is (B ‘(1 2 3 bob))?

Answer: (bob)

b) What is (B ‘((1 3 bob (4)) (5 ((6))) (7 (8 bob) 9))) ??

Answer: (bob bob)

5. What does the following expression evaluate to in the top-level environment? Be very

explicit:

 (let ([a 5] [b 3])

 (lambda (x y) (* a (+ b (* x y))))

When this is evaluated in the top-level environment, a new
environment is created that extends the top-level environment with
bindings of a to 5 and b to 4. Call this new environment E’. The let
expression then returns the value of its body in E’. Since the body is
a lambda expression, it evaluates to a closure with three parts: the
parameter list (x y), the lambda’s body (* a (+ b (* x y))) as an
unevaluated expression, and the environment E’ (which has the
bindings for a and b). This closure is the value of the full let-
expression.

6.

a. Write (last lat) which returns the last atom in the flat list lat. For example,

(last ‘(a b c d)) returns d. None of the entries of lat will be null.

(define last

 (lambda (lat)

 (cond

 [(null? lat) null]

 [(null? (cdr lat)) (car lat)]

 [else (last (cdr lat))])))

b. Write (last* L) which returns the last non-null atom int the general list L. For

example,(last* ‘(a (b (c)) (d (e f)) (()))) should return f.

(define last*

 (lambda (L)

 (cond

 [(null? L) null]

 [(atom? L) L]

 [(let ([A (last* (car L))]

 [B (last* (cdr L))])

 (if (null? B) A B))])))

7. Write function (separateNums L) that returns a list of two flat lists: one containing the

numbers of L, the other containing any other atoms of L. Both lists should have their

atoms in the same order as L. For example,

(separateNums ‘(a b 3 c 4 2 d 5)) returns ((3 4 2 5) (a b c d)) while

(separateNums ‘((a b (c (d 1 2) 3)) ((e 4 5 (f))))) returns ((1 2 3 4 5) (a b c d e f))

(define separateNums
 (lambda (L)
 (cond
 [(null? L) (list (list null) (list null))]
 [(atom? L) (if (number? L)
 (list (list L) null)
 (list null (list L)))]
 [else (let ([A (map separateNums L)])
 (list (apply append (map car A))
 (apply append (map cadr A))))])))

