CS 275
Exam |
Fall 2019

1. Write procedure (duplicate a lat) that adds a second instance of atom a every time a is
found in the flat list lat. For example, (duplicate ‘b ‘(ab acab a)) returns
(@abbacabba)

(define duplicate
(lambda (a lat)
(cond
[(null? lat) null]
[(eq? a (car lat)) (cons a
(cons a
(duplicate a (cdr lat)))))]

[else (cons (car lat) (duplicate a (cdr lat)))])))

2. Write procedure (removeDuplicates lat). As usual lat is a flat list of atoms. For each
run of identical entries in lat, such as the 3sin (123 3 3 2 1), this procedure will remove
all but one of those entries. So (removeDuplicates (1333342 21))returns
(13421),and (removeDuplicates (121 2 3)) returns (1212 3)

(define removeDuplicates
(lambda (lat)
(cond

[(null? lat) null]

[(null? (cdr lat)) lat]

[(eq? (car lat) (cadr lat))
(removeDuplicates (cdr lat))]

[else (cons (car lat)
(removeDuplicates (cdr lat)))])))

3. Use foldr or foldl to write (count a lat) which returns the number of instances of atom a
in lat, a flat list of atoms. For example, (count3 ‘(1 2 3 2 3 2 3 4 3 3)) returns 5

(define count
(lambda (a lat)
(foldr (lambda (x y) (if (eg?xa) (+y1)y))
0
lat)))

4. Consider the following function:
(define B
(lambda (L)
(cond
[(null? L) null]
[(atom? L) (if (eg? L 'bob) (list L) null)]
[else (apply append (map B L))])))
a) Whatis (B ‘(1 2 3 bob))?

Answer: (bob)

b) Whatis (B ((13bob (4)) (5((6))) (7 (8bob)9))) ??

Answer: (bob bob)

5. What does the following expression evaluate to in the top-level environment? Be very
explicit:
(let ([a 5][b3])
(lambda (x y) (* a (+ b (* xy))))

When this is evaluated in the top-level environment, a new
environment is created that extends the top-level environment with
bindings of a to 5 and b to 4. Call this new environment E’. The let
expression then returns the value of its body in E’. Since the body is
a lambda expression, it evaluates to a closure with three parts: the
parameter list (x y), the lambda’s body (* a (+ b (* x y))) as an
unevaluated expression, and the environment E’ (which has the
bindings for a and b). This closure is the value of the full let-
expression.

a. Write (last lat) which returns the last atom in the flat list lat. For example,
(last ‘(a b ¢ d)) returns d. None of the entries of lat will be null.

(define last
(lambda (lat)
(cond
[(null? lat) null]
[(null? (cdr lat)) (car lat)]
[else (last (cdr lat))])))

b. Write (last* L) which returns the last non-null atom int the general list L. For
example,(last* “(a (b (c)) (d (e f)) (()))) should return f.

(define last*
(lambda (L)
(cond

[(null? L) null]

[(atom? L) L]

[(let (JA (last* (car L))]
[B (last* (cdr L))])
(if (null? B) A B))])))

7. Write function (separateNums L) that returns a list of two flat lists: one containing the
numbers of L, the other containing any other atoms of L. Both lists should have their
atoms in the same order as L. For example,

(separateNums ‘(ab 3 c42d5)) returns ((3425) (abcd)) while
(separateNums ‘((ab(c(d12)3)) ((€45(f)))) returns((12345)(abcdef))

(define separateNums
(lambda (L)
(cond

[(null? L) (list (list null) (list null))]

[(atom? L) (if (number? L)
(list (list L) null)
(list null (list L)))]

[else (let ([A (map separateNums L)])

(list (apply append (map car A))
(apply append (map cadr A))))])))

